18 research outputs found

    Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation

    Full text link
    We present a microfabricated surface-electrode ion trap with a pair of integrated waveguides that generate a standing microwave field resonant with the 171Yb+ hyperfine qubit. The waveguides are engineered to position the wave antinode near the center of the trap, resulting in maximum field amplitude and uniformity along the trap axis. By calibrating the relative amplitudes and phases of the waveguide currents, we can control the polarization of the microwave field to reduce off-resonant coupling to undesired Zeeman sublevels. We demonstrate single-qubit pi-rotations as fast as 1 us with less than 6 % variation in Rabi frequency over an 800 um microwave interaction region. Fully compensating pulse sequences further improve the uniformity of X-gates across this interaction region.Comment: 14 pages, 8 figure

    Demonstration of integrated microscale optics in surface-electrode ion traps

    Full text link
    In ion trap quantum information processing, efficient fluorescence collection is critical for fast, high-fidelity qubit detection and ion-photon entanglement. The expected size of future many-ion processors require scalable light collection systems. We report on the development and testing of a microfabricated surface-electrode ion trap with an integrated high numerical aperture (NA) micromirror for fluorescence collection. When coupled to a low NA lens, the optical system is inherently scalable to large arrays of mirrors in a single device. We demonstrate stable trapping and transport of 40Ca+ ions over a 0.63 NA micromirror and observe a factor of 1.9 enhancement in photon collection compared to the planar region of the trap.Comment: 15 pages, 8 figure
    corecore